
The Complexity of Quantitative Concurrent Parity Games

Krishnendu Chatterjee Luca deAlfaro Thomas A. Henzinger

Report No. UCB/CSD-4-1354

November 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 2004 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2004 to 00-00-2004  

4. TITLE AND SUBTITLE 
The Complexity of Quantitative Concurrent Parity Games 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
We consider two-player infinite games played on graphs. The games are concurrent, in that at each state
the players choose their moves simultaneously and independently, and stochastic, in that the moves
determine a probability distribution for the successor state. The value of a game is the maximal probability
with which a player can guarantee the satisfaction of her objective. We show that the values of concurrent
games with !-regular objectives expressed as parity conditions can be computed in NP coNP. This result
substantially improves the best known previous bound of 3EXPTIME. It also shows that the full class of
concurrent parity games is no harder than the special cases of turnbased deterministic parity games
(Emerson-Jutla) and of turn-based stochastic reachability games (Condon), for both of which NP coNP is
the best known bound. While the previous, more restricted NP coNP results for graph games relied on the
existence of particularly simple (pure memoryless) optimal strategies, in concurrent games with parity
objectives optimal strategies may not exist, and "-optimal strategies (which achieve the value of the game
within a parameter " > 0) require in general both randomization and infinite memory. Hence our proof
must rely on a more detailed analysis of strategies and, in addition to the main result yields two results that
are interesting on their own. First, we show that there exist "-optimal strategies that in the limit coincide
with memoryless strategies; this parallels the celebrated result of Mertens- Neyman for concurrent games
with limit-average objectives. Second we complete the characterization of the memory requirements for "-
optimal strategies for concurrent !-regular games, by showing that memoryless strategies suffice for
"-optimality for coB?uchi conditions. 

15. SUBJECT TERMS 



16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

31 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



The Complexity of Quantitative Concurrent Parity

Games∗

Krishnendu Chatterjee† Luca de Alfaro§ Thomas A. Henzinger†‡

† EECS, University of California, Berkeley,USA
§ CE, University of California, Santa Cruz,USA

‡ Computer and Communication Sciences, EPFL, Switzerland
{c krish,tah}@eecs.berkeley.edu, luca@soe.ucsc.edu

Abstract

We consider two-player infinite games played on graphs. The games
are concurrent, in that at each state the players choose their moves
simultaneously and independently, and stochastic, in that the moves
determine a probability distribution for the successor state. The value
of a game is the maximal probability with which a player can guarantee
the satisfaction of her objective. We show that the values of concurrent
games with ω-regular objectives expressed as parity conditions can be
computed in NP ∩ coNP. This result substantially improves the best
known previous bound of 3EXPTIME. It also shows that the full class
of concurrent parity games is no harder than the special cases of turn-
based deterministic parity games (Emerson-Jutla) and of turn-based
stochastic reachability games (Condon), for both of which NP ∩ coNP
is the best known bound.

While the previous, more restricted NP ∩ coNP results for graph
games relied on the existence of particularly simple (pure memoryless)
optimal strategies, in concurrent games with parity objectives optimal
strategies may not exist, and ε-optimal strategies (which achieve the
value of the game within a parameter ε > 0) require in general both
randomization and infinite memory. Hence our proof must rely on a
more detailed analysis of strategies and, in addition to the main result,
yields two results that are interesting on their own. First, we show
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9988172, and CCR-0225610, and by the NSF Career grant CCR-0132780, the NSF grant
CCR-0234690, and by the ONR grant N00014-02-1-0671
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that there exist ε-optimal strategies that in the limit coincide with
memoryless strategies; this parallels the celebrated result of Mertens-
Neyman for concurrent games with limit-average objectives. Second,
we complete the characterization of the memory requirements for ε-
optimal strategies for concurrent ω-regular games, by showing that
memoryless strategies suffice for ε-optimality for coBüchi conditions.

1 Introduction

We consider recursive games played between two players over a graph [22,
10, 16]. The games proceed in an infinite number of rounds. At each round,
the players choose moves; the two moves, together with the current state,
determine a probability distribution for the successor state. An outcome of
the game, or play, consists in the infinite sequence of states visited. These
graph games can be broadly classified into turn-based and concurrent games.
In turn-based games, in any given round only one player can choose among
multiple moves: effectively, the set of states of the graph can be partitioned
into the states where it is player 1’s turn to play, and the states where
it is player 2’s turn to play. In concurrent games, both players may have
multiple moves available at each state, and the players choose their moves
simultaneously and independently.

An important class of winning conditions are the ω-regular languages.
In such games, the goal of player 1 is to ensure that the play belongs to
a specified ω-regular language; the goal of player 2 is to ensure that the
play does not belong to the language. The games are thus zero-sum: the
objectives of the two players are complementary. The ω-regular languages
are the generalization to infinite words of the classical regular languages [24];
the properties expressible by ω-regular languages include safety, reachability,
and fairness. Games with ω-regular winning conditions have been applied to
system synthesis [2, 21, 19] and verification [9, 13, 7]. Of particular interest
are ω regular languages that are given as parity conditions on game graphs;
this is because every ω-regular game can be converted into a parity game
[18, 25, 26].

Given a recursive game and an ω-regular language L, the value
〈〈1〉〉val (L)(s) of the game for player 1 at a state s is equal to the maxi-
mal probability with which player 1 can ensure that the play lies in L; the
value 〈〈2〉〉val (L)(s) of the game for player 2 at s is equal to the maximal prob-
ability with which player 2 can ensure that the play lies outside L. Martin’s
determinacy theorem ensures that 〈〈1〉〉val (L)(s)+〈〈2〉〉val (L)(s) = 1 [15]. Ex-
cept for the special case of turn-based games, little has been known about
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the computational complexity of finding the value for a recursive game with
an ω-regular winning condition. In the turn-based case, it is known that the
value of games with ω-regular conditions can be computed in NP ∩ coNP.
This result was first obtained for turn-based deterministic parity games,
in which each moves determines uniquely (instead of probabilistically) the
successor state [9], and for turn-based stochastic reachability games [5]; the
case of turn-based stochastic parity games was shown in [3].

Concurrent games are substantially more complex than turn-based
games in several respects. To see this, consider the structure of optimal
strategies, which are strategies that achieve the value of a given game. For
turn-based stochastic ω-regular games, there always exist pure (determinis-
tic) optimal strategies, which do not rely on randomized choice [3]; in the
case of turn-based stochastic parity games, moreover, there are always pure
memoryless optimal strategies, where the choice of move depends only on
the current state, rather than also on the past history of the game. It is this
observation that led to the NP ∩ coNP result for turn-based parity games.

By contrast, in concurrent games, already for reachability conditions,
players must in general play with randomized (non-pure) strategies, which
prescribe, at each round, a probability distribution over the moves to be
played. Furthermore, optimal strategies may not exist: rather, for every
real ε > 0, the players have ε-optimal strategies, which achieve the value
of the game within ε. Even for relatively simple winning conditions, such
as Büchi conditions, ε-optimal strategies need both randomization and in-
finite memory [8]. It is therefore not inconceivable that the complexity of
concurrent ω-regular games might be considerably worse than NP ∩ coNP.
The only known previous algorithm for computing the value of concurrent
parity games is triple-exponential [8]: it was obtained via a reduction to the
theory of the real closed field, by using decision procedures for the theory
of reals with addition and multiplication [23, 1].

In this paper, we show that the problem of computing the value of a
concurrent parity game is in NP ∩ coNP. More precisely, as the value of
a concurrent game at a state can be an irrational number, we show that
given an encoding of the game and of a rational ε > 0, the problem of
approximating the value of the game within ε can be solved in NP ∩ coNP.
This result generalizes the best known upper bound (NP ∩ coNP) for very
restricted cases, such as turn-based deterministic parity games and turn-
based stochastic reachability games, to the class of all concurrent parity
games.

The basic idea behind the proof, which can no longer rely on the existence
of pure memoryless optimal strategies, is as follows. We call a value class a
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maximal set of states where the game has the same value for player 1. By the
results of [6] on qualitative winning (i.e., winning with probability 1), if the
(player 1) value of the game is not constant 1 or 0, then there are two non-
empty value classes W1 and W2 where the value is 1 and 0, respectively. We
show that if the players play ε-optimal strategies, then W1 ∪W2 is reached
with probability 1. Through a detailed analysis of the branching structure of
the stochastic process of the game, we go on to show that we can construct a
ε-optimal strategy by stitching together strategies, one per each value class.
This gives us a polynomial witness for the resulting strategy and proves
membership in NP; membership in NP ∩ coNP follows from the fact that
the problem is symmetrical in players 1 and 2.

A detailed analysis of our proof gives us several new results about the
structure of ε-optimal strategies in concurrent parity games. First, we show
that concurrent games with coBüchi winning conditions admit memoryless ε-
optimal strategies. This result completes the characterization of the memory
requirements of the optimal strategies for concurrent ω-regular games: it was
previously known that safety and reachability games admit memoryless ε-
optimal strategies [11, 8], and that Büchi conditions may require infinite
memory [8]. Second, we show that in concurrent parity games, the limit
of the ε-optimal strategies for ε → 0 is a memoryless strategy (which in
general is not optimal). This result parallels the celebrated result of Mertens-
Neyman [17] for concurrent games with limit-average objectives.

2 Definitions

Notation. For a countable set A, a probability distribution on A is a func-
tion δ : A 7→ [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability

distributions on A by D(A). Given a distribution δ ∈ D(A), we denote by
Supp(δ) = {x ∈ A | δ(x) > 0} the support of δ.

Definition 1 (Concurrent Games) A (two-player) concurrent game
structure G = 〈S,Moves ,Γ1,Γ2, δ〉 consists of the following components:

• A finite state space S.

• A finite set Moves of moves.

• Two move assignments Γ1,Γ2 : S 7→ 2Moves \ ∅. For i ∈ {1, 2},
assignment Γi associates with each state s ∈ S the non-empty set
Γi(s) ⊆ Moves of moves available to player i at state s.
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• A probabilistic transition function δ : S × Moves × Moves → D(S),
that gives the probability δ(s, a1, a2)(t) of a transition from s to t when
player 1 plays a1 and player 2 plays move a2, for all s, t ∈ S and
a1 ∈ Γ1(s), a2 ∈ Γ2(s).

We distinguish the following special classes of concurrent game structures.

• A concurrent game structure G is deterministic if for all s ∈ S and all
a1 ∈ Γ1(s), a2 ∈ Γ2(s), there is a t ∈ S such that δ(s, a1, a2)(t) = 1.

• A concurrent game structure G is turn-based if at every state at most
one player can choose among multiple moves; that is, if for every state
s ∈ S there exists at most one i ∈ {1, 2} with |Γi(s)| > 1.

We define the size of the game structure G to be equal
to the size of the transition function δ; specifically, |G| =∑

s∈S

∑
a∈Γ1(s)

∑
b∈Γ2(s)

∑
t∈S |δ(s, a, b)(t)|, where |δ(s, a, b)(t)| denotes the

space to specify the probability distribution. We write n to denote the size
of the state space, i.e., n = |S|. At every state s ∈ S, player 1 chooses a
move a1 ∈ Γ1(s), and simultaneously and independently player 2 chooses
a move a2 ∈ Γ2(s). The game then proceeds to the successor state t with
probability δ(s, a1, a2)(t), for all t ∈ S. A state s is called an absorbing
state if for all a1 ∈ Γ1(s) and a2 ∈ Γ2(s) we have δ(s, a1, a2)(s) = 1. In
other words, at s for all choice of moves of the players the next state is
always s. A state s is a turn-based state if there exists i ∈ { 1, 2 } such
that |Γi(s)| = 1. Moreover, if |Γ2(s)| = 1 then the state s is a player-
1 turn-based state since the choice of moves for player 2 is trivial; and if
|Γ1(s)| = 1 then it is a player-2 turn-based state. We assume that the players
act non-cooperatively, i.e., each player chooses her strategy independently
and secretly from the other player, and is only interested in maximizing her
own reward. For all states s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we
indicate by Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors
of s when moves a1, a2 are selected.

A path or a play ω of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states
in S such that for all k ≥ 0, there are moves ak

1 ∈ Γ1(sk) and ak
2 ∈ Γ2(sk)

with δ(sk, ak
1 , a

k
2)(sk+1) > 0. We denote by Ω the set of all paths and by Ωs

the set of all paths ω = 〈s0, s1, s2, . . .〉 such that s0 = s, i.e., the set of plays
starting from state s.
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2.1 Randomized strategies

A selector ξ for player i ∈ {1, 2} is a function ξ : S 7→ D(Moves) such that for
all s ∈ S and a ∈ Moves, if ξ(s)(a) > 0 then a ∈ Γi(s). We denote by Λi the
set of all selectors for player i ∈ {1, 2}. A selector ξ is pure if for every s ∈ S
there is a ∈ Moves such that ξ(s)(a) = 1; we denote by ΛP

i ⊆ Λi the set of
pure selectors for player i. A strategy for player 1 is a function σ : S+ → Λ1

associates with every finite non-empty sequence of states, representing the
history of the play so far, a selector. Similarly we define strategies π for
player 2. A strategy σ for player i is pure if it yields only pure selectors,
that is, is of type S+ → ΛP

i . A strategy with memory can be described as
a pair of functions: (a) memory update function σu : S × M → M, and (b)
next move function σm : S × M → Λ1. A strategy with memory is finite
memory if M is finite. A memoryless strategy is independent of the history
of the play and depends only on the current state. Memoryless strategies
coincide with selectors, and we often write σ for the selector corresponding
to a memoryless strategy σ. A strategy is pure memoryless if it is pure and
memoryless. We denote by ΣP ,ΣF ,ΣPM the family of pure, finite-memory
and pure memoryless strategies for player 1 respectively. Analogously we
define the families of strategies for player 2. We denote by Σ and Π the set
of all strategies for player 1 and player 2, respectively.

Once the starting state s and the strategies σ and π for the two players
have been chosen, the game is reduced to an ordinary stochastic process.
Hence, the probabilities of events are uniquely defined, where an event A ⊆
Ωs is a measurable set of paths. For an event A ⊆ Ωs, we denote by Prσ,π

s (A)
the probability that a path belongs to A when the game starts from s and
the players follows the strategies σ and π. For i ≥ 0, we also denote by
Θi : Ωs → S the random variable denoting the i-th state along a path.

2.2 Objectives

We specify objectives for the players by providing the set of winning plays
Φ ⊆ Ω for each player. In this paper we study only zero-sum games [20, 11],
where the objectives of the two players are strictly competitive. In other
words, it is implicit that if the objective of one player is Φ, then the objective
of the other player is Ω \Φ. Given a game graph G and an objective Φ ⊆ Ω,
we write (G,Φ) for the game played on the graph G with the objective Φ
for player 1.

A general class of objectives are the Borel objectives [12]. A Borel
objective Φ ⊆ Sω is a Borel set in the Cantor topology on Sω. In this
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paper we consider ω-regular objectives [26], which lie in the first 21/2 lev-
els of the Borel hierarchy (i.e., in the intersection of Σ3 and Π3). The
ω-regular objectives, and subclasses thereof, can be specified in the follow-
ing forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = { s ∈ S |
sk = s for infinitely many k ≥ 0} to be the set of states that occur infinitely
often in ω.

• Reachability and safety objectives. Given a set T ⊆ S of “tar-
get” states, the reachability objective requires that some state of T
be visited. The set of winning plays is thus Reach(T ) = { ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }. Given a set F ⊆ S,
the safety objective requires that only states of F be visited. Thus,
the set of winning plays is Safe(F ) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
F for all k ≥ 0 }.

• Büchi and coBüchi objectives. Given a set B ⊆ S of “Büchi” states, the
Büchi objective requires that B is visited infinitely often. Formally, the
set of winning plays is Büchi(B) = { ω ∈ Ω | Inf(ω) ∩B 6= ∅ }. Given
C ⊆ S, the coBüchi objective requires that all states visited infinitely
often are in C. Formally, the set of winning plays is coBüchi(C) =
{ ω ∈ Ω | Inf(ω) ⊆ C }.

• Parity objective. For c, d ∈ N, we let [c..d] = { c, c + 1, . . . , d }. Let
p : S 7→ [0..d] be a function that assigns a priority p(s) to every
state s ∈ S, where d ∈ N. The Even parity objective is defined as
Parity(p) = { ω ∈ Ω | min

(
Inf(ω)

)
is even }, and the Odd parity

objective as coParity(p) = {ω ∈ Ω | min
(
Inf(ω)

)
is odd }. Informally

we say that a path ω satisfy the parity objective, Parity(p), if ω ∈
Parity(p).

Note that for a priority function p : V → { 0, 1 }, an even parity objective
Parity(p) is equivalent to the Büchi objective Büchi(p−1(0)), i.e., the Büchi
set consists of the states with priority 0.

The ability to solve games with parity objectives suffices for solving
games with arbitrary LTL (or ω-regular) objectives: in fact, it suffices to
encode the ω-regular objective as a deterministic Rabin-chain automaton
or parity automaton, solving then the game consisting of the synchronous
product of the original game with the Rabin-chain automaton [18, 25].

Given any parity winning objective, we write Ωe to denote Parity(p);
this set is measurable for any choice of strategies for the two players [27].
Similarly we write Ωo to denote coParity(p). Note that Ωe ∩ Ωo = ∅ and
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Ωe ∪ Ωo = Ω. Given a state s we write Ωes to denote Ωs ∩Ωe and similarly
we write Ωos to denote Ωs ∩Ωo. Hence, the probability that a path satisfies
objective Parity(p) starting from state s ∈ S, given strategies σ, π for the
players is Prσ,π

s (Ωes). Given a state s ∈ S and a parity winning objective,
Parity(p), we are interested in finding the maximal probability with which
player 1 can ensure that Parity(p) and player 2 can ensure that coParity(p)
holds from s. We call such probability the value of the game G at s for
player i ∈ { 1, 2 }. The value for player 1 and player 2 are given by the
function 〈〈1〉〉val (Ωe) : S 7→ [0, 1] and 〈〈2〉〉val (Ωo) : S 7→ [0, 1], defined for all
s ∈ S by

〈〈1〉〉val (Ωe)(s) = sup
σ∈Σ

inf
π∈Π

Prσ,π
s (Ωes)

〈〈2〉〉val (Ωo)(s) = sup
π∈Π

inf
σ∈Σ

Prσ,π
s (Ωos).

Note that the objectives of the player are complementary and hence we
have a zero-sum game. Concurrent games satisfy a quantitative version of
determinacy [15], stating that for all parity winning objectives, and all s ∈ S,
we have

〈〈1〉〉val (Ωe)(s) + 〈〈2〉〉val (Ωo)(s) = 1.

A strategy σ for player 1 is optimal if for all s ∈ S we have

inf
π∈Π

Prσ,π
s (Ωes) = 〈〈1〉〉val (Ωe)(s).

For ε > 0, a strategy σ for player 1 is ε-optimal if for all s ∈ S we have

inf
π∈Π

Prσ,π
s (Ωes) ≥ 〈〈1〉〉val (Ωe)(s)− ε.

We define optimal and ε-optimal strategies for player 2 symmetrically. Note
that the quantitative determinacy of concurrent games is equivalent to the
existence of ε-optimal strategies for both players, for all ε > 0, at all states
s ∈ S. We denote by 〈〈1〉〉limit = { s | 〈〈1〉〉val (Ωe)(s) = 1 } and 〈〈2〉〉limit =
{ s | 〈〈2〉〉val (Ωo)(s) = 1 }, the set of states where player 1 and player 2 have
values 1, respectively.

2.3 The branching structure of plays

Many of the arguments developed in this paper rely on a detailed analysis
of the branching process resulting from the strategies chosen by the players,
and from the probabilistic transition relation of the game. In order to make
our arguments precise, we need some definitions. A play is feasible if each of
its transitions could have arisen according to the transition relation of the
game.
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Definition 2 (Feasible plays and outcomes) Given strategies σ for
player 1 and π for player 2, a play ω = 〈s0, s1, s2, . . .〉 is feasible in
a concurrent game graph G, if for every k ∈ N the following condi-
tions hold: (1) sk+1 ∈ Dest(sk, a1, a2); (2) σ(s0, s1, . . . , sk)(a1) > 0 and
(3) π(s0, s1, . . . , sk)(a2) > 0. Given strategies σ ∈ Σ and π ∈ Π, and a
state s, we denote by Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that
start from s, given strategies σ and π.

In order to make precise statements about the branching process arising
from a game play, we define below trees labeled by game states.

Definition 3 (Infinite trees, S-labeled trees and trees for events)
An infinite tree is a set Tr ⊆ N∗ such that

• if x · i ∈ Tr where x ∈ N∗ and i ∈ N then x ∈ Tr;

• for all x ∈ Tr there exists i ∈ N such that x · i ∈ Tr. We refer to x · i
as a successor of x.

We call the elements in Tr as nodes and the empty word ε is the root of the
tree. An infinite path τ of Tr is a set τ ⊆ Tr such that

• ε ∈ τ ;

• for every x in τ there is an unique i ∈ N such that x · i ∈ τ . Note that
for every i ∈ N, there is an unique element x ∈ τ such that |x| = i.
We denote by τi the element x ∈ τ such that |x| = i.

Given an infinite tree Tr and a node x ∈ Tr, we denote by Tr(x) the
sub-tree rooted at node x. Formally, Tr(x) denotes the set { x′ ∈ Tr |
x is a prefix of x′ }.

A S-labeled tree T is a pair (Tr, 〈·〉), where Tr is a tree and 〈·〉 : Tr → S
maps each node of Tr to a state s ∈ S. Given a S-labelled tree T , and a
infinite path τ ⊆ Tr, we denote by 〈τ〉 the play 〈s0, s1, s2, . . .〉, such that
s0 = 〈ε〉 and for all i > 0 we have si = 〈τi〉. A S-labeled tree Ts = (Trs, 〈·〉),
where 〈ε〉 = s, represents a set of infinite paths, denoted as L(Ts) ⊆ Ωs, such
that

L(Ts) = { ω = 〈s0 = s, s1, s2, . . .〉 ∈ Ωs | ∃τ ⊆ Trs. 〈τ〉 = ω }.

A S-labeled tree Ts represents an event A ⊆ Ωs if and only if L(Ts) = A.
We denote by TA,s a S-labeled tree that represents an event A ⊆ Ωs, and
denote by TrA,s the tree of TA,s.
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Several of the following results will be phrased in terms of the S-labeled tree
T σ,π
A,s , which represents the outcomes from s ∈ S that result from player 1

using strategy σ and player 2 using strategy π, and that belong to a specified
event A.

Definition 4 (Trees for strategies) Given a measurable event A, strate-
gies σ, π, a state s, such that Prσ,π

s (A) > 0, we denote by T σ,π
A,s a S-labeled

tree to represent A ∩ Outcome(s, σ, π), and we also denote by Trσ,π
A,s the

tree of T σ,π
A,s . Given strategy σ, π, we denote by T σ,π

s the S-labeled tree
T σ,π

Outcome(s,σ,π),s, and we also denote by Trσ,π
s the tree of T σ,π

s .

Notations. Let T = (Tr, 〈·〉) be a S-labeled tree and x ∈ Tr such that
|x| = n. We denote by xi the prefix of x of length i. We denote by
hist(x) = (〈ε〉, 〈x1〉, . . . , 〈xn〉), the history represented by the path from
root to the node x. We denote by Cone(x) = { ω = (s0, s1, s2, . . . , ) |
〈xi〉 = si for all 0 ≤ i ≤ n } the set of paths with the prefix hist(x). Given
a measurable event A ⊆ Ωs, strategies σ and π such that Prσ,π

s (A) > 0,
consider the S-labeled tree T σ,π

A,s to represent A ∩ Outcome(s, σ, π). Con-
sider the event Anil = { Cone(x) | x ∈ Trσ,π

A,s. Prσ,π
s (Cone(x) ∩ A) = 0 }.

Since Anil is the countable union of measurable sets each with measure 0
we have Prσ,π

s (Anil ∩ A) = 0. Hence, in sequel without loss of general-
ity given any event A, we only consider the event A \ Anil and by a lit-
tle abuse of notation use T σ,π

A,s to represent the stochastic tree T σ,π
(A\Anil ),s

.
Hence, without loss of generality we assume for any x ∈ Trσ,π

A,s we have
Prσ,π

s (Cone(x)∩A) > 0. Henceforth, for any x ∈ Trσ,π
A,s we write Prσ,π

x (B | A)
to denote Prσ,π

s (B | Cone(x),A).

Definition 5 (Perennial ε-optimal strategies) For all ε > 0, a strategy
σ is a perennial ε-optimal strategy for player 1, from state s, if for all
strategy π, for all node x in the stochastic tree Trσ,π

s , we have Prσ,π
x (Ωes) ≥

〈〈1〉〉val (Ωe)(〈x〉) − ε, i.e., in the stochastic sub-tree rooted at x player 1 is
ensured the value of the game at 〈x〉 within ε-precision. Perennial ε-optimal
strategies for player 2 are defined analogously. We denote by Σε and Πε the
set of perennial ε-optimal strategies for player 1 and player 2 respectively.

The ε-optimal strategies constructed for parity objectives in [8] are
perennial ε-optimal strategies. This gives us the following Proposition.

Proposition 1 For all ε > 0, we have Σε 6= ∅ and Πε 6= ∅.
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3 Games with Reachability Objectives

In this section we show that the values of a concurrent parity game can
be related to the ε-Nash equilibrium of a non-zero sum reachability game.
This generalizes the well-known results in MDPs, stating that for all parity
objectives the values of a MDP is equivalent to the value of reaching the set
of states with value 1.

3.1 Non-zero sum reachability game

In sequel, we consider stochastic trees T σ,π
A,s such that Prσ,π

s (A) > 0. Given
a stochastic tree T σ,π

A,s , let κ be a subset of nodes, i.e., κ ⊆ Trσ,π
A,s. Analogous

to the definition of reachability and safety we define the following notions
of reachability and safety in the stochastic tree:

1. Reachability in tree. For a set κ ⊆ Trσ,π
A,s, let

ReachTree(κ) = {〈τ〉 | τ is an infinite path in Trσ,π
A,s such that ∃i ∈ N. τi ∈ κ},

denote the set of paths that reach the subset κ of nodes.

2. Safety in tree. For a set κ ⊆ Trσ,π
A,s, let

SafeTree(κ) = {〈τ〉 | τ is an infinite path in Trσ,π
A,s such that ∀i ∈ N. τi ∈ κ},

denote the set of paths that stay safe in the subset κ of nodes.

Given a positive integer k and a set κ ⊆ Trσ,π
A,s, we define by ReachTreek(κ) =

{ 〈τ〉 | ∃ x ∈ τ. ∃ i ≤ k. xi ∈ κ }, i.e., the set of paths that reaches κ within
k steps.

Lemma 1 (Reachability Lemma) Let T σ,π
A,s be a stochastic tree.

1. For a set κ ⊆ Trσ,π
A,s, if infx∈Trσ,π

A,s
Prσ,π

x (ReachTree(κ) | A) > 0, then
Prσ,π

x (ReachTree(κ) | A) = 1, for all nodes x ∈ Trσ,π
A,s.

2. For a set U ⊆ S, if infx∈Trσ,π
A,s

Prσ,π
x (Reach(U) | A) > 0, then

Prσ,π
x (Reach(U) | A) = 1, for all nodes x ∈ Trσ,π

A,s.

Proof. We prove the first case and show that the second case is an imme-
diate consequence.

11



1. Let 0 < c ≤ infx∈Trσ,π
A,s

Prσ,π
x (ReachTree(κ) | A). Chose 0 < c′ < c. For

every node x ∈ Trσ,π
A,s, there exists kx such that Prσ,π

x (ReachTreekx(κ) |
A) ≥ c′. Consider k1 = kε (recall that ε is the root of the tree) and
consider the frontier F1 of Trσ,π

A,s at depth k1. Given a frontier F at
depth k, let F be the set of nodes x in F such that the path from the
root to x has not visited a node in κ, i.e., none of ε, x1, x2, . . . , x|x| is
in κ. For a frontier Fi, define ki+1 = max{kx | x ∈ Fi}. Inductively,
define the frontier Fi+1 at depth

∑i+1
j=1 kj . It follows that for k =∑n

i=1 ki we have Prσ,π
s (Ω \ ReachTreek(κ) | A) ≤ (1 − c′)n. Since

limn→∞(1 − c′)n = 0, the desired result follows for the root of the
tree. Since infx∈Trσ,π

A,s
Prσ,π

x (ReachTree(κ) | A) > 0, it follows that for
all node x ∈ Trσ,π

A,s we have infx1∈Trσ,π
A,s(x) Prσ,π

x1
(ReachTree(κ) | A) > 0.

Arguing similarly for the subtree rooted at the node x the desired
result follows.

k1

k2

Reach(U)

c′
(1− c′)

c′ (1 − c′)

Figure 1: The Stochastic Tree for Reachability

2. Observe that with κ = { x ∈ Trσ,π
A,s | 〈x〉 ∈ U }, we have Reach(U) =

ReachTree(κ). The result is immediate from part 1.

Notations. Let A ⊆ Ωs be a measurable event such that Prσ,π
s (A) > 0.

For a set B ⊆ S, let InfSet(B) = {ω | Inf(ω) ⊆ B}. For a set B ⊆ S, let
InfSetEq(B) = {ω | Inf(ω) = B}. Given a node x in Trσ,π

A,s, and ε > 0, we
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define Cσ,π
A,ε(x) as follows:

Cσ,π
A,ε(x) = {B ⊆ S | Prσ,π

x (InfSet(B) | A) ≥ 1− ε }.

Note that for ε1 > 0 and ε2 > 0, such that ε1 ≤ ε2, for any node x ∈ Trσ,π
A,s,

if B ∈ Cσ,π
A,ε1

(x) then B ∈ Cσ,π
A,ε2

(x). We define by Cσ,π
A (x) = limε→0 Cσ,π

A,ε(x).
The monotonicity property of Cσ,π

A,ε with respect to ε ensures that Cσ,π
A (x)

exists for all x ∈ Trσ,π
A,s.

Lemma 2 For every node x ∈ Trσ,π
A,s, there is a unique minimal element of

Cσ,π
A (x) under the ⊂ ordering.

Proof. Consider a node x ∈ Trσ,π
A,s. Let B1 and B2 be two distinct minimal

elements in Cσ,π
A (x). Consider any arbitrary ε > 0. It follows from the

definition that we have Prσ,π
x (InfSet(Bi) | A) ≥ 1 − ε

2 , for i ∈ { 1, 2 }. By
definition we must have Prσ,π

x (InfSet(B1 ∪B2) | A) ≤ 1. Hence we have the
following equation:

Prσ,π
x (InfSet(B1) | A)+Prσ,π

x (InfSet(B2) | A)−Prσ,π
x ((InfSet(B1∩B2)) | A) ≤ 1

Hence it follows that Prσ,π
x ((InfSet(B1 ∩B2)) | A) ≥ 1− ε. Hence for every

ε > 0, we have Prσ,π
x (InfSet(B1∩B2) | A) ≥ 1−ε. Hence, B1∩B2 ∈ Cσ,π

A (x).
However, this is a contradiction to the assumption that B1 and B2 are
distinct minimal elements of Cσ,π

A (x).
We define the function Mσ,π

A : Trσ,π
A,s → 2S that assigns to every node

x ∈ Trσ,π
A,s the minimum element of Cσ,π

A (x). Formally, we have

Mσ,π
A (x) =

⋂
B∈Cσ,π

A (x)

B = lim
ε→0

⋂
B∈Cσ,π

A,ε(x)

B.

Proposition 2 For every x ∈ Trσ,π
A,s, for every successor x1 of x we have

Mσ,π
A (x1) ⊆Mσ,π

A (x).

Proof. By definition for any nodes x, x1 ∈ Trσ,π
A,s, such that x1 is a successor

of x we have Cσ,π
A (x1) ⊆ Cσ,π

A (x). The result is an easy consequence of the
above fact.

Lemma 3 Given a S-labeled tree T σ,π
A,s , for all node x ∈ Trσ,π

A,s, for all ε > 0,
there is a set B ⊆ S, and x1 ∈ Trσ,π

A,s(x), such that

Prσ,π
x1

(InfSetEq(B) | A) ≥ 1− ε.
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Proof. The proof is by induction on |Mσ,π
A (x)|.

Base Case. If |Mσ,π
A (x)| = 1, let Mσ,π

A (x) = {s}. Then for all nodes x1 ∈
Trσ,π

A,s(x) we have Prσ,π
x1

(InfSet({s}) | A) ≥ 1− ε, for all ε > 0. Thus for all
nodes x1 ∈ Trσ,π

A,s(x), for all ε > 0, we have Prσ,π
x1

(InfSetEq({s}) | A) ≥ 1−ε.
Inductive Case. Suppose there exist a node x1 ∈ Trσ,π

A,s(x) such that
Mσ,π

A (x1) ( Mσ,π
A (x), then |Mσ,π

A (x1)| < |Mσ,π
A (x)| and the result follows

by inductive hypothesis at x1. Otherwise for every node x1 ∈ Trσ,π
A,s(x)

we have Mσ,π
A (x1) = Mσ,π

A (x). Let the set Mσ,π
A (x) be B. We have

limε→0
⋂

x1∈Trσ,π
A,s(x)

( ⋂
D∈Cσ,π

A,ε(x1) D
)

= B.

• Suppose we have infx1∈Trσ,π
A,s(x) Prσ,π

x1
(Reach({s}) | A) > 0, for all states

s ∈ B. Then it follows from Lemma 1 that for all nodes x1 ∈ Trσ,π
A,s(x)

we have Prσ,π
x1

(Reach({s}) | A) = 1. Hence for all nodes x1 ∈ Trσ,π
A,s(x)

we have Prσ,π
x1

(InfSetEq(B) | A) = 1.

• Otherwise, consider a state s ∈ B such that
infx1∈Trσ,π

A,s(x) Prσ,π
x1

(Reach({ s }) | A) = 0. Hence it follows,
for every ε > 0, there is a node x1 ∈ Trσ,π

A,s(x) such that
Prσ,π

x1
(InfSet(B \ { s }) | A) ≥ 1 − ε. Formally, we have

limε→0
⋂

x1∈Trσ,π
A,s(x)

( ⋂
D∈Cσ,π

A,ε(x1) D
)
⊆ B \ { s }. This is a con-

tradiction to the fact that for all nodes x1 ∈ Trσ,π
A,s(x) we have

Mσ,π
A (x1) = B (i.e., limε→0

⋂
x1∈Trσ,π

A,s(x)

(⋂
D∈Cσ,π

A,ε(x1) D
)

= B).

The desired result follows.

Lemma 4 For every stochastic tree T σ,π
A,s , for every node x ∈ Trσ,π

A,s one of
the following conditions hold:

1. for all ε > 0, there is a node x1 ∈ Trσ,π
A,s(x) such that Prσ,π

x1
(Ωes | A) ≥

1− ε;

2. for all ε > 0, there is a node x1 ∈ Trσ,π
A,s(x) such that Prσ,π

x1
(Ωos | A) ≥

1− ε.

Proof. It follows from Lemma 3 that for all ε > 0, there is a node x1 ∈
Trσ,π

A,s(x), and a set B such that Prσ,π
x1

(InfSetEq(B) | A) ≥ 1−ε. If min(p(B))
is even then condition 1 is satisfied; otherwise condition 2 is satisfied.

We now show that solving the zero-sum parity game is equivalent to
computing the states where the value of the players are 1 and then solv-
ing some special ε-Nash equilibrium of a non-zero sum reachability game.
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Consider a game graph G with winning objectives, Ωe for player 1 and Ωo

for player 2. In sequel we denote by W1 = 〈〈1〉〉limit and W2 = 〈〈2〉〉limit .
We will prove that if both the player play one of their perennial ε-optimal
strategies, with ε → 0, then the probability of Ωe being satisfied is equal to
the probability of reaching W1 and the probability of Ωo being satisfied is
equal to the probability of reaching W2. For a set T ⊆ S we denote by T
the set S \ T . Given a state s and a set T of vertices we write Safes(T ) to
denote Safe(T ) ∩ Ωs and Reachs(T ) to denote Reach(T ) ∩ Ωs.

Lemma 5 (Reachability with ε-optimal strategies) Given a game G,
consider a strategy pair (σ, π) ∈ Σε × Πε, with ε → 0. For all states s, for
all node x ∈ Trσ,π

s we have Prσ,π
x (Safes(W1 ∪W2)) = 0.

Proof. Let 0 < 2 · η < α = min{〈〈1〉〉val (Ωe)(s), 〈〈2〉〉val (Ωo)(s) |
s ∈ W1 ∪W2}, i.e., α is the least positive value for player 1 or
player 2. Consider a strategy pair (σ, π) ∈ Ση × Πη, i.e., the strate-
gies are perennial η-optimal strategies. Let Uσ,π

s = {x ∈ Trσ,π
s | s ∈

W1 ∪W2 and Prσ,π
x (Safes(W1 ∪W2)) > 0}. If Uσ,π

s is empty the de-
sired result follows. Assume for the sake of contradiction that Uσ,π

s is
non-empty. Let x be a node in Uσ,π

s and consider the S-labeled sub-
tree T σ,π

s (x) rooted at x. Since Prσ,π
x (Safes(W1 ∪W2)) > 0, we must

have infx1∈Trσ,π
s (x) Prσ,π

x1
(Reachs(W1 ∪ W2)) = 0. Otherwise, it follows

from Lemma 1 that if infx1∈Trσ,π
s (x) Prσ,π

x1
(Reachs(W1 ∪ W2)) > 0, then

Prσ,π
x (Reachs(W1∪W2)) = 1. Since infx1∈Trσ,π

s (x) Prσ,π
x1

(Reachs(W1∪W2)) =
0 we have supx1∈Trσ,π

s (x) Prσ,π
x1

(Safes(W1 ∪W2)) = 1. Consider a node
x1 ∈ Trσ,π

s (x) such that Prσ,π
x1

(Safes(W1 ∪W2)) ≥ 1 − η. Let A be the
event Safes(W1 ∪W2). Since σ and π are perennial η-optimal strategy, and
Prσ,π

x1
(A) ≥ 1 − η, it follows that for every node x2 ∈ Trσ,π

A,s(x1) we have
Prσ,π

x2
(Ωes | A) ≥ c1 ≥ (α− 2η) > 0 and Prσ,π

x2
(Ωos | A) ≥ c2 ≥ (α− 2η) > 0.

This implies that for all node x2 ∈ Trσ,π
A,s(x1) we have Prσ,π

x2
(Ωes | A) ≤ 1−c2

and Prσ,π
x2

(Ωos | A) ≤ 1− c1. It follows from Lemma 4 that for every ε > 0,
there is a node x2 ∈ Trσ,π

s (x1) such that either Prσ,π
x2

(Ωes | A) ≥ 1 − ε or
Prσ,π

x2
(Ωos | A) ≥ 1 − ε. Since c1 and c2 are constants greater than 0, we

have a contradiction. Hence Uσ,π
s = ∅ and the Lemma follows.

Lemma 6 Given a game G, let the winning objectives of player 1 and
player 2 be Ωe and Ωo, respectively. Then

lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Reachs(W1)) = 〈〈1〉〉val (Ωe)(s)

lim
ε→0

sup
π∈Πε

inf
σ∈Σε

Prσ,π
s (Reachs(W2)) = 〈〈2〉〉val (Ωo)(s)
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Proof. Given any strategy σ and π we have the following equality:

Prσ,π
s (Ωes) = Prσ,π

s (Ωes ∩ Safes(W1 ∪W2))
+ Prσ,π

s (Ωes ∩ Reachs(W1 ∪W2))

It follows from the definition of ε-optimal strategies and determinacy
of parity games [15, 8] that for all state s we have 〈〈1〉〉val (Ωe)(s) =
limε→0 supσ∈Σε

infπ∈Πε Prσ,π
s (Ωes). For any state s have the following con-

tainment relation: Ωes ∩ Safes(W1 ∪W2) ⊆ Safes(W1 ∪W2). It follows
from Lemma 5 that limε→0 sup(σ,π)∈Σε×Πε

Prσ,π
s (Ωes ∩ Safes(W1 ∪W2)) = 0.

Hence we have

〈〈1〉〉val (Ωe)(s) = lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Ωes ∩ Reachs(W1 ∪W2))

Since σ and π are ε-optimal strategies we have the following two facts:

lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Ωes ∩ Reachs(W2)) = 0

lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Ωes | Reachs(W1)) = 1.

This gives us the following equality:

〈〈1〉〉val (Ωe)(s) = lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Ωes ∩ Reachs(W1))

The right hand side of the equality can be expressed as

lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Ωes | Reachs(W1)) Prσ,π

s (Reachs(W1))

= lim
ε→0

sup
σ∈Σε

inf
π∈Πε

Prσ,π
s (Reachs(W1)).

This gives us the desired result.
Consider the following variants of the game G, a game GA and GR as

follows, with the same state space as G and the states in W1 and W2 changed
to absorbing states. GA is a zero-sum parity game and the priority for each
state in W1 is 0 and for each state in W2 is 1, and for all the other states is
same as the priority of the game G. Note that for every state s the value for
player 1 and player 2 for the game G and GA are the same. The game GR

is a non-zero sum reachability game and the winning objectives of both the
players are reachability objectives: the objective for player 1 is Reach(W1)
and the objective for player 2 is Reach(W2). Note that the game GR is
not zero-sum in the following sense: there are infinite paths ω such that
ω 6∈ Reach(W1) and ω 6∈ Reach(W2) and each player gets a payoff 0 for
the path ω. We define ε-Nash equilibrium of the game GR and relate some
special ε-Nash equilibrium of GR with the values of G.
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Definition 6 (ε-Nash equilibrium in GR) A strategy profile (σ∗, π∗) ∈
Σ × Π is an ε-Nash equilibrium at state s if the following two conditions
hold:

∀σ ∈ Σ. Prσ∗,π∗
s (Reachs(W1)) ≥ Prσ,π∗

s (Reachs(W1))− ε

∀π ∈ Π. Prσ
∗,π∗

s (Reachs(W2)) ≥ Prσ∗,π
s (Reachs(W2))− ε

Theorem 1 (Nash equilibrium of reachability game GR associated
with the parity game G) The following assertion hold for the game GR.

1. For all ε > 0, there is an ε-Nash equilibrium (σ∗ε , π∗ε) such that for all
states s we have

lim
ε→0

Prσ
∗
ε ,π∗ε

s (Reachs(W1)) = 〈〈1〉〉val (Ωe)(s)

lim
ε→0

Prσ
∗
ε ,π∗ε

s (Reachs(W2)) = 〈〈2〉〉val (Ωo)(s).

Proof. It follows from Lemma 6 and Proposition 1.

4 Strategy Characterization and Computational
Complexity

In this section we construct polynomial witnesses for perennial ε-optimal
strategies and describe polynomial procedure to verify the witnesses. An
immediate consequence is the fact that the values of concurrent parity games
can be decided within ε-precision in NP ∩ coNP. Since the values can be
irrational, one can only hope to ε-approximate the values. Our proof tech-
niques reveals several key characteristics of the perennial ε-optimal strate-
gies. In general perennial ε-optimal strategies require infinite memory in
general [6, 8]. We show that though the perennial ε-optimal strategies re-
quire infinite memory in general, there exist perennial ε-optimal strategies
that in limit coincide with some memoryless strategies. This result parallels
with the celebrated result of Mertens-Neyman [17] for concurrent games with
limit-average objectives, that states there exists ε-optimal strategies that in
limit coincide with some memoryless strategies (the memoryless strategy cor-
respond to the memoryless optimal strategies in the discounted game with
discount factor tends to 0). It may be noted that the memoryless strate-
gies that the perennial ε-optimal strategies coincide, is itself not necessarily
ε-optimal.
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In concurrent games with safety objective optimal memoryless strategies
exist, and the optimal strategies in general require randomization [11]. In
case of concurrent games with reachability objectives optimal strategies need
not exist, but memoryless ε-optimal strategies exist for all ε > 0 [11], and the
ε-optimal strategies require randomization. In case of concurrent games with
Büchi objectives, ε-optimal strategies require infinite memory in general [6].
In contrast we show that for all ε > 0, memoryless ε-optimal strategies
exit for all concurrent games with coBüchi objectives. It follows from the
simpler case of reachability objectives that optimal strategies need not exist
and ε-optimal strategies require randomization. It follows from the results
on Büchi objectives that in concurrent games with parity objectives with 3
or more priorities ε-optimal strategies require infinite memory in general.
Our result thus completes the precise memory requirements of ε-optimal
strategies in concurrent parity games.

4.1 Reduction to Qualitative Witness

The notion of local optimality will play an important role in our construction
of polynomial witnesses. Informally, a selector function ξ is locally optimal
if it is optimal in the one-step matrix game where each state is assigned
a reward value 〈〈1〉〉val (Ωe)(s). A locally optimal strategy is a strategy that
consists of locally optimal selectors. A locally ε-optimal strategy is a strat-
egy that has a total deviation from locally-optimal selectors of at most ε.
Locally optimal selectors and strategies play a role in the construction of
polynomial witnesses, since local optimality is a notion that can be checked
in polynomial time.

We note that local ε-optimality and ε-optimality are very different no-
tions. Local ε-optimality consists in the approximation of a local selector; a
locally ε-optimal strategy provides no guarantee of yielding a probability of
winning the game close to the optimal one. On the other hand, a ε-optimal
strategy is a strategy that guarantees a probability of winning close to the
optimal one; there are no constraints on its local structure. The construc-
tion of polynomial witnesses will depend on constructing a relation between
the notion of local ε-optimality (which is polynomially checkable) and global
ε-optimality (which yields a value close to the value of the game).

Definition 7 (Locally ε-optimal selectors and strategies) A selector
ξ is locally optimal if for all s ∈ S and a2 ∈ Γs(s) we have

E[〈〈1〉〉val (Ωe)(Θ1) | s, ξ(s), a2] ≥ 〈〈1〉〉val (Ωe)(s).
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We denote by Λ` the set locally-optimal selectors.
A strategy σ is locally optimal if for every history 〈s0, s1, . . . , sk〉 we have

σ(s0, s1, . . . , sk) ∈ Λ`, i.e., player 1 plays a locally optimal selector at every
stage of the play. We denote by Σ` the set of locally optimal strategies.

A strategy σε is locally ε-optimal if for every strategy π ∈ Π and for
every ω = 〈s0, s1, s2, . . . , 〉 ∈ Outcome(s, σε, π) we have

∞∑
k=0

(
max{(〈〈1〉〉val (Ωe)(sk)−E[〈〈1〉〉val (Ωe)(Θk+1) | sk, σε(ωk), π(ωk)]), 0}

)
≤ ε,

where ωk = 〈s0, s1, . . . , sk〉. We denote by Σ`
ε the set of locally ε-optimal

strategies.

A value class of the game is the set of all states where the game has a given
value.

Definition 8 (Value class) A value class VC(r) is the set of states s such
that the value for player 1 is r. Formally, VC(r) = {s | 〈〈1〉〉val (Ωe)(s) = r}.
Note that for any game there are at most |S| many value classes. By VC<r

we denote the set {s | 〈〈1〉〉val (Ωe)(s) < r} and similarly we use VC>r to
denote the set {s | 〈〈1〉〉val (Ωe)(s) > r}.

Intuitively, we can picture the game as a “quilt” of value classes. Two of the
value classes correspond to values 1 (player 1 wins with probability arbitrar-
ily close to 1) and 0 (player 2 wins with probability arbitrarily close to 1);
the other value classes correspond to intermediate values. We construct a
polynomial witness in a piece-meal fashion. We first show that we can con-
struct, for each intermediate value class, a strategy that with probability
arbitrarily close to 1 guarantees either leaving the class, or winning without
leaving the class. Such a strategy can be constructed using results from [6],
and has a concise (polynomial) witness. Second, we show that the above
strategy can be constructed so that when the class is left, it is left via a lo-
cally ε-optimal selector. By stitching together the strategies constructed in
this fashion for the various value classes, we will obtain a single polynomial
witness for the complete game. The construction of a strategy in a value
class relies on the following reduction.

Reduction. For a state s we define the set of allowable actions as follows

AllowActs(s) = {γ ⊆ Γ1(s) : such that there is an optimal selector
ξ`
1 ∈ Λ` and Supp(ξ`

1) = γ}
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Let G = (S,Moves ,Γ1,Γ2, δ) be a concurrent game with parity objectives
Parity(p) and coParity(p) for player 1 and player 2 respectively, and let the
priority function be p. Consider a value class VC(r) with 0 < r < 1.
We construct a concurrent game G̃r = (S̃r, M̃oves , Γ̃1, Γ̃2, δ̃) with a priority
function p̃ as follows:

1. State space. Given a state s let AllowActs(s) = {γ1, γ2, . . . , γk}.
Then we have

S̃r = { s̃ | s ∈ VC(r) } ∪ { w1, w2 }
∪{ (s̃, i) | s ∈ VC(r), i ∈ { 1, 2, . . . , k } and AllowActs(s) = {γ1, γ2, . . . , γk} }

2. Priority function.

(a) p̃(s̃) = p(s) for all s ∈ VC(r).

(b) p̃((s̃, i)) = p(s) for all (s̃, i) ∈ S̃r.

(c) p̃(w1) = 0 and p̃(w2) = 1.

3. Moves assignment.

(a) Γ̃1(s̃) = { 1, 2, . . . , k } such that AllowActs(s) = {γ1, γ2, . . . , γk}
and Γ̃2(s̃) = {a2}. Note that every s̃ ∈ S̃r is a player-1 turn-based
state.

(b) Γ̃1((s̃, i)) = {i}∪(Γ1(s)\γi) and Γ̃2((s̃, i)) = Γ2(s). At state (s̃, i)
all the moves in γi are collapsed to one move i and the moves not
in γi exist in the set of available moves.

4. Transition function.

(a) The states w1 and w2 are absorbing states. Observe that player 1
have value 1 and 0 at state w1 and w2 respectively.

(b) For any state s̃ we have δ̃(s̃, i, a2)((s̃, i)) = 1. Hence at state s̃
player 1 can decide which element in AllowActs(s) to play and if
player 1 chooses move i the game proceed to state (s̃, i).

(c) Transition function at state (s̃, i).

i. For any move a2 ∈ Γ2(s), if there is a move a1 ∈ γi such that∑
s′ 6∈VC(r) δ(s, a1, a2)(s′) > 0, then δ̃((s̃, i), i, a2)(w1) = 1.

The above transition specifies that if for a move a2 for
player 2 and a move a1 ∈ γi for player 1, if the game G pro-
ceeds to a different value class with positive probability then
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1 : γ1

k : γk

(i, b) for some a ∈ γi,

Win for
player 1.

(a, b), a 6∈ γi

Win for player 2.

According to the optimal

i : γi

the value class.
(s, a, b) goes out of

distribution of γi and
b for player 2.

Figure 2: Reduction to limit-sure

in G̃r the game proceeds to the state w1, which has value 1
for player 1, with probability 1. Note, that since a1 ∈ γi and
γi ∈ AllowActs(s), if in G the game proceeds to a different
value class with positive probability it also proceeds to VC>r

with positive probability.
ii. For any move a2 ∈ Γ2(s), if for every move a1 ∈ γi we have∑

s′∈VC(r) δ(s, a1, a2)(s′) = 1 then

δ̃((s̃, i), i, a2)(s̃′) =
∑

a1∈γi

ξ`
1(a1) · δ(s, a1, a2)(s′)

where ξ`
1 is an locally optimal selector with Supp(ξ`

1) = γi.
iii. For any move a1 ∈ (Γ1(s) \ γi), for any move a2 ∈ Γ2(s) we

have:

δ̃((s̃, i), a1, a2)(s̃′) = δ(s, a1, a2)(s′) for s′ ∈ VC(r);

δ̃((s̃, i), a1, a2)(w2) =
∑

s′ 6∈VC(r)

δ(s, a1, a2)(s′).

The reduction is illustrated in Fig. 2.

Fact 1. If player 1 follows a strategy σε such that at any state (s̃, i) it plays
action i with probability 1 then for every strategy π for player 2 we have
Prσε,π

es (Reach(w2)) = 0.

Lemma 7 For every r > 0, for any state s ∈ VC(r), the state s̃ is limit-
sure winning in the game G̃r for player 1, i.e., from state s̃ player 1 can win
with probability arbitrarily close to 1.
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Proof. Let σε be a locally ε-optimal and perennial ε-optimal strategy in G,
i.e., σε ∈ Σ`

ε ∩Σε (the fact that Σ`
ε ∩Σε 6= ∅ follows from the results of [8]).

Assume for the sake of contradiction that U ⊆ S̃r ∩ { s̃ | s ∈ VC(r) } is a
non-empty set such that player 2 wins with bounded-positive probability.
Let π̃ be a perennial bounded-positive optimal strategy for player 2 from
the set U . We construct a projected strategy σ̃ε for player 1 in G̃r and a
extended strategy πε for player 2 in G as follows:

1. Strategy σ̃ε in the game G̃r:

• σ̃ε(s̃0, (s̃0, i0), s̃1, (s̃1, i1), . . . , s̃k)(j) = 1 if and only if γj =
arg maxγ∈AllowActs(sk)

∑
a∈γ σε(s0, s1, . . . , sk)(a).

• σ̃ε(s̃0, (s̃0, i0), s̃1, (s̃1, i1), . . . , s̃k, (s̃k, j))(j) =∑
a∈γj

σε(s0, s1, . . . , sk)(a) and for all a′ 6∈ γj we
have σ̃ε(s̃0, (s̃0, i0), s̃1, (s̃1, i1), . . . , s̃k, (s̃k, j))(a′) =
σε(s0, s1, . . . , sk)(a′).

2. Strategy πε in the game G:

• πε(s0, s1, . . . , sk) = π̃(s̃0, (s̃0, i0), s̃1, (s̃1, i1), . . . , s̃k)) such that for
all 0 ≤ l ≤ k, we have σ̃ε(s̃0, (s̃0, i0), s̃1, (s̃1, i1), . . . , s̃l))(il) = 1.

Given a set of states C̃ ⊆ S̃r \ { w1, w2 } we denote by CG = { s |
s̃ ∈ C̃ or, for some i. (s̃, i) ∈ C̃ }. Suppose, for some state s̃ we have
Prfσε,eπ

es (Safees(C̃)) > 0, for some set C̃ ⊆ S̃r \ { w1, w2 }. Then by con-
struction of πε we have Prσε,πε

s (Safes(CG)) > 0. It follows from argu-
ment similar to Lemma 5 that there is a node x ∈ Trσε,πε

s such that
Prσ,π

x (Safes(CG)) ≥ 1 − ε′, with ε′ → 0. Let us denote by A the event
Safes(CG). Note that for event A, the strategy pair (σε, πε) is well-defined.
Since σε is a perennial ε-optimal strategy, for all nodes x1 ∈ Trσε,πε

A,s (x)
we have Prσε,πε

x1
(Ωos | A) ≤ c2, for c2 < 1. Since π̃ is a perennial

bounded positive optimal strategy in G̃r for all nodes x1 ∈ Trσε,πε

A,s (x) we
have Prσε,πε

x1
(Ωes | A) ≤ c1 and for c1 < 1. However, this is a contra-

diction to Lemma 4. Hence for every state s̃ ∈ S̃r \ { w1, w2 } we have
Prfσε,eπ

es (Safees(S̃r \ {w1, w2 })) = 0, and hence Prfσε,eπ
es (Reaches({w1, w2 })) = 1.

Since, σε ∈ Σ`
ε it follows from the construction of the game G̃r, Fact 1. and

the property of locally ε-optimal strategies that Prfσε,eπ
es (Reaches({w2 })) ≤ ε.

Thus Prfσε,eπ
es (Ωe ∩Ωes) ≥ Prfσε,eπ

es (Reaches({w1 })) ≥ 1− ε. This is a contradic-
tion to the assumption that π̃ is bounded positive optimal.
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Limit-sure witness [6]. The witness strategy σ for a limit-sure game
constructed in [6] consists of the following parts: a ranking function of
the states, and a ranking function of the actions at a state. The ranking
functions were described by a µ-calculus formula. The witness strategy σ
at round k of a play, at a state s, plays the actions of the least rank at s
with positive-bounded probabilities and other actions with vanishingly small
probabilities (as function of ε), in appropriate proportion as described by
the ranking function. Hence, the strategy σ can be described as

σ = (1− εk)σ` + εk · σd(εk),

where σ` is any selector with ξ such that Supp(ξ) is the set actions with
least rank, and σd(εk) denotes a selector with Supp(σd(εk)) = Γ1 \Supp(σ`).
Hence the strategy σ plays the moves in Supp(σd(εk)) with vanishingly small
probability as εk → 0. We denote by limit-sure witness move set the set
of actions with the least rank, i.e., Supp(σ`). It follows from the above
construction that as ε → 0, the limit-sure winning strategy σ converges to
the memoryless selector σ`, i.e., the limit of the limit-sure witness strategy
is a memoryless strategy.

Lemma 8 At any state (s̃, i), if the limit-sure witness move set for player 1
is γ, if (γ \ { i }) 6= ∅, then (γ \ { i }) ∈ AllowActs(s).

Proof. Consider a move a ∈ γ \ { i }. If there is a move b ∈ Γ2(s) such that
δ̃((s̃, i), a, b)(w2) > 0, we would obtain a contraction to the hypothesis that
player 1, at (s̃, i), wins with probability arbitrarily close to 1. Hence, we
have Dest(s, a, b) ⊆ VC(r) for every move b ∈ Γ2(s), leading to the result.

Lemma 9 (Union-closure of AllowActs(s)) For all state s, if γ1 ∈
AllowActs(s) and γ2 ∈ AllowActs(s), then γ1 ∪ γ2 ∈ AllowActs(s).

Proof. It follows from the properties of “one-step” matrix games that if ξ1

and ξ2 are optimal strategies for a player, then any convex combination of
ξ1 and ξ2 is also an optimal strategy. Thus it follows that if ξ1 ∈ Λ` and
ξ2 ∈ Λ`, then there exist ξ ∈ Λ` such that Supp(ξ) = Supp(ξ1) ∪ Supp(ξ2).
The lemma follows.

Lemma 10 At any state (s̃, i), if the limit-sure witness move set for player 1
is γ, then γj =

(
(γ \ { i }) ∪ γi

)
∈ AllowActs(s).

Proof. The Lemma follows from Lemma 8 and Lemma 9.
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Lemma 11 For every state s̃ there is a pure memoryless move j for player 1
and limit-sure winning strategy σ such that Supp(σ)(s̃) = {j } and the limit-
sure witness move set at (s̃, j) = { j }.

Proof. The existence of pure memoryless move is a consequence of the fact
that every state s̃ is a player-1 turn-based state and the witness construction
in [6]. The rest follows from Lemma 10.

Definition 9 (Value-class qualitative optimal strategy) A strategy
σε is a value-class qualitative optimal strategy for a value-class VC(r), with
0 < r < 1, if

1. σε is locally ε-optimal.

2. Let π be an arbitrary strategy for player 2. For a state s ∈ W1 ∪W2,
for all node x in Trσε,π

s such that 〈x〉 ∈ VC(r), Prσε,π
x (Ωes |

Safe(VC(r))) ≥ 1− ε.

A strategy σε is value-class qualitative optimal if it is value-class qualitative
optimal for all value class 0 < r < 1.

The existence of value-class qualitative optimal strategies follows from
Lemma 7 and Lemma 11.

Lemma 12 The set of value-class qualitative optimal strategies is non-
empty.

Lemma 13 Let σε be a locally ε-optimal strategy. For all strategy π for
player 2, for all node x ∈ Trσε,π

s , if Prσε,π
x (Reach(W1 ∪ W2)) = 1, then

Prσε,π
x (Reach(W1)) ≥ 〈〈1〉〉val (Ωe)(〈x〉)− ε.

Proof. The results then follows from the fact that the sequence
(〈〈1〉〉val (Ωe)(Θi))i is a sub-martingale under σε and π.

The following Lemma shows that the value-class qualitative optimal
strategies for different value classes can be “stitched” or composed together
to produce a perennial ε-optimal strategy. This will allow us to produce
witness for individual value classes and compose them to obtain a witness
for perennial ε-optimal strategy.

Lemma 14 (Stitching Lemma) Let σε be a value-class qualitative opti-
mal strategy and perennial ε-optimal for all state in W1. Then σε is a
perennial ε-optimal strategy.
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Proof. Consider any strategy π for player 2 and consider the stochastic tree
T σε,π

s for any state s. For a node x we define the set SafeVal(x) = { ω =
〈s0, s1, . . . , 〉 ∈ Cone(x) | ∀ k ≥ |x|.sk ∈ VC(r), where 〈x〉 ∈ VC(r) } as the
set of paths that stays safe in the value class VC(r) of 〈x〉 from x. Note
that Cone(x)\SafeVal(x) denotes the set of paths that leaves the value class
VC(r) from x. Let α = max{ 〈〈1〉〉val (Ωe)(s) | s ∈ (S \ W1 }, i.e., α is the
maximum value for player 1 that is less than 1. Consider the following set
of nodes

κ1 = { x ∈ Trσε,π
s | Prσε,π

x (SafeVal(x))) ≥ α }
κ2 = { x ∈ Trσε,π

s | Prσε,π
x (Cone(x) \ SafeVal(x)) > 1− α }

Note that κ1 = Trσε,π
s \ κ2 and hence for any node x ∈ Trσ,π

A,s we have
Prσε,π

x (ReachTree(κ1)) + Prσε,π
x (SafeTree(κ2)) = 1. Consider the event A =

SafeTree(κ2). Since σε is a locally ε-optimal strategy it follows that if a
play leaves a value class VC(r) with probability at least (1 − α) > 0, then
it reaches VC>r with positive bounded probability. It follows that κ2 ⊆
{ x | Prσε,π

x (Reach(W1 ∪W2)) ≥ c > 0 }. Hence, it follows that for all node
x ∈ Trσε,π

A,s we have infx1∈Trσε,π
A,s

Prσε,π
x1

(Reach(W1 ∪ W2) | A) > 0. It follows
from Lemma 1 that for all node x ∈ Trσε,π

A,s we have Prσε,π
x (Reach(W1∪W2) |

A) = 1. Since σε is locally ε-optimal, it follows from Lemma 13 that

Prσε,π
x (Ωes | Reach(W1 ∪W2)) ≥ Prσε,π

x (Reach(W1)) ≥ 〈〈1〉〉val (Ωe)(〈x〉)− ε.

Since σε is a value-class qualitative optimal strategy we have Prσε,π
x (Ωes |

Safe(VC(r)) ≥ (1−ε). Therefore, for all node x in κ1 we have Prσε,π
x (Ωes) ≥

α · (1 − ε) > α − ε, since α < 1. Thus for all node x we have, Prσε,π
x (Ωes |

ReachTree(κ1)) > α− ε. For all node x we have

Prσε,π
x (Ωes) ≥ Prσε,π

x (Ωes | SafeTree(κ2)) · Prσε,π
x (SafeTree(κ2))

+ Prσε,π
x (Ωes | ReachTree(κ1)) · Prσε,π

x (ReachTree(κ1))
≥ (〈〈1〉〉val (Ωe)(〈x〉)− ε) · Prσε,π

x (SafeTree(κ2))
+ (α− ε) · Prσε,π

x (ReachTree(κ1))

Since 〈〈1〉〉val (Ωe)(〈x〉) ≤ α we have Prσε,π
x (Ωes) ≥ 〈〈1〉〉val (Ωe)(〈x〉)−ε. Hence

σε is a perennial ε-optimal strategy.
The following Theorem follows from existence of memoryless limit-sure

winning strategies for concurrent games with coBüchi objectives [6] and the
existence of perennial ε-optimal strategies obtained by composing value-class
qualitative optimal strategies across value classes (Lemma 14).

Theorem 2 (Memoryless ε-optimal strategies for coBüchi objectives)
For every ε > 0, memoryless ε-optimal strategies exist for all coBüchi
objectives on all concurrent games.
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The following Theorem states that there exist perennial ε-optimal strate-
gies that in limit coincide with locally optimal selector, i.e., a memoryless
strategy with locally optimal selectors. This parallels the results of Mertens-
Neyman [17] for concurrent games with limit-average objectives.

Theorem 3 (Limit of ε-optimal strategies) For every ε > 0, there ex-
ist perennial ε-optimal strategy σε ∈ Σε, such that the sequence of the strate-
gies σε converge to a locally optimal selector σ as ε → 0, i.e., limε→0 σε = σ,
where σ ∈ Σ` and σ is memoryless.

Proof. For arbitrary ε > 0, consider the perennial ε-optimal strategy σε

constructed as a value-class qualitative optimal strategy. The fact that
the value-class qualitative optimal strategy is a perennial ε-optimal strategy
follows from Lemma 14. The result then follows from Lemma 11 and the fact
that the limit-sure winning strategies coincide in limit with a memoryless
selector σ` such that Supp(σ`) is the set of least-rank actions of the limit-sure
witness.

Witness for perennial ε-optimal strategies. The witness for a peren-
nial ε-optimal strategy σε is presented as a value-class qualitative optimal
strategy (recall Lemma 14). The existence of a value-class qualitative op-
timal strategy is guaranteed by Lemma 12. The witness consists of the
limit-sure winning strategy witness in the game G̃r, for all 0 < r < 1, and
of a locally ε-optimal strategy. The witness can be described as follows:

• Limit-sure witness. The limit-sure witness in the game G̃r, for r > 0,
is constructed as the the witness described in [6]. Observe that the
game G̃r can be exponential in the size of the game G, since the
set AllowActs(s) can be exponential. To obtain efficient polynomial
witness we make the following key observation: at every state s̃ there
is a pure memoryless move i for player 1 (Lemma 11) in the limit-
sure witness strategy. Hence player 1 constructs a game G̃′

r such that
every state s̃ there is only a single successor (s̃, i), where i is a pure
memoryless move in the limit-sure witness in G̃r. The graph G̃′

r is
linear in the size of the game G. The witness in state (s̃, i) is the
witness as described in [6]: the witness consists of a ranking function
of the actions and a ranking function of the state space. The witness is
polynomial and can be verified in polynomial time in size of the game
graph.

• Locally ε-optimal witness. The locally ε-optimal witness consists of
the following:
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1. The values of the game at every state s, within ε precision.

2. The locally optimal selector σ ∈ Σ`. Note that the selector σ
may specify probabilities that are irrational. The locally optimal
selector σ is ε-approximated by a k-uniform selector σk, where a
k-uniform selector is a selector such that the associated probabil-
ities of the distribution are multiple of 1

k . It follows from [4, 14],
that k is polynomial in the size of the game graph and 1

ε . The
strategy σk must satisfy the constraint that Supp(σk) is exactly
the set of actions with the least rank as described by the limit-
sure witness. The verification of the witness can be achieved in
polynomial time, since checking local optimality involves verify-
ing that σk is optimal for the “one-step” game with respect to
the values at every state.

It follows from above that there are polynomial witness for perennial ε-
optimal strategies and the witness can be verified in polynomial time. This
shows that the values of concurrent parity games can be decided with in
ε-precision in NP. Since concurrent parity games are closed under comple-
mentation the decision procedure is also in coNP. This gives us the following
Theorem.

Theorem 4 (Computational complexity of concurrent parity games)
For all constant ε > 0,

1. for all rational r, whether 〈〈1〉〉val (Ωe)(s) ≥ r− ε can be decided in NP
∩ coNP.

2. the value functions 〈〈1〉〉val (Ωe) and 〈〈2〉〉val (Ωo) can be approximated
within ε-precision in time exponential in G and polynomial in 1

ε .

The previous best known algorithm to approximate values is triple ex-
ponential in the size of the game graph and logarithmic in 1

ε [8].
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